Chapter 12: Problem 6
Given a function \(f: A \rightarrow B\) and a subset \(Y \subseteq B,\) is \(f\left(f^{-1}(Y)\right)=Y\) always true? Prove or give a counterexample.
Chapter 12: Problem 6
Given a function \(f: A \rightarrow B\) and a subset \(Y \subseteq B,\) is \(f\left(f^{-1}(Y)\right)=Y\) always true? Prove or give a counterexample.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the set \(f=\\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x+3 y=4\\} .\) Is this a function from \(\mathbb{Z}\) to \(\mathbb{Z} ?\) Explain.
Suppose \(A=\\{a, b, c\\} .\) Let \(f: A \rightarrow A\) be the function \(f=\\{(a, c),(b, c),(c, c)\\},\) and let \(g: A \rightarrow A\) be the function \(g=\\{(a, a),(b, b),(c, a)\\} .\) Find \(g \circ f\) and \(f \circ g\).
A function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) is defined as \(f(n)=2 n+1\). Verify whether this function is injective and whether it is surjective.
Consider the functions \(f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}\) defined as \(f(m, n)=m+n\) and \(g: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}\) defined as \(g(m)=(m, m)\). Find the formulas for \(g \circ f\) and \(f \circ g\).
Given a function \(f: A \rightarrow B\) and subsets \(W, X \subseteq A,\) then \(f(W \cap X)=f(W) \cap f(X)\) is false in general. Produce a counterexample.
What do you think about this solution?
We value your feedback to improve our textbook solutions.