Chapter 12: Problem 3
There are four different functions \(f:\\{a, b\\} \rightarrow\\{0,1\\} .\) List them. Diagrams suffice.
Chapter 12: Problem 3
There are four different functions \(f:\\{a, b\\} \rightarrow\\{0,1\\} .\) List them. Diagrams suffice.
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven a function \(f: A \rightarrow B\) and subsets \(W, X \subseteq A,\) then \(f(W \cap X)=f(W) \cap f(X)\) is false in general. Produce a counterexample.
Suppose \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) is defined as \(f=\\{(x, 4 x+5): x \in \mathbb{Z}\\} .\) State the domain, codomain and range of \(f .\) Find \(f(10)\).
Consider the set \(f=\left\\{\left(x^{2}, x\right): x \in \mathbb{R}\right\\}\). Is this a function from \(\mathbb{R}\) to \(\mathbb{R}\) ? Explain.
Suppose \(A=\\{1,2,3\\} .\) Let \(f: A \rightarrow A\) be the function \(f=\\{(1,2),(2,2),(3,1)\\},\) and let \(g: A \rightarrow A\) be the function \(g=\\{(1,3),(2,1),(3,2)\\} .\) Find \(g \circ f\) and \(f \circ g\)
Given a function \(f: A \rightarrow B\) and subsets \(W, X \subseteq A,\) prove \(f(W \cup X)=f(W) \cup f(X)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.