Chapter 12: Problem 3
Suppose \(A=\\{1,2,3\\} .\) Let \(f: A \rightarrow A\) be the function \(f=\\{(1,2),(2,2),(3,1)\\},\) and let \(g: A \rightarrow A\) be the function \(g=\\{(1,3),(2,1),(3,2)\\} .\) Find \(g \circ f\) and \(f \circ g\)
Chapter 12: Problem 3
Suppose \(A=\\{1,2,3\\} .\) Let \(f: A \rightarrow A\) be the function \(f=\\{(1,2),(2,2),(3,1)\\},\) and let \(g: A \rightarrow A\) be the function \(g=\\{(1,3),(2,1),(3,2)\\} .\) Find \(g \circ f\) and \(f \circ g\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\operatorname{Let} B=\left\\{2^{n}: n \in \mathbb{Z}\right\\}=\left\\{\ldots, \frac{1}{4}, \frac{1}{2}, 1,2,4,8, \ldots\right\\} .\) Show that the function \(f: \mathbb{Z} \rightarrow B\) defined as \(f(n)=2^{n}\) is bijective. Then find \(f^{-1}\).
Let \(f: A \rightarrow B\) be a function, and \(Y \subseteq B\). Prove or disprove: \(f^{-1}\left(f\left(f^{-1}(Y)\right)\right)=f^{-1}(Y)\).
Suppose \(A=\\{5,6,8\\}, B=\\{0,1\\}, C=\\{1,2,3\\} .\) Let \(f: A \rightarrow B\) be the function \(f=\) \(\\{(5,1),(6,0),(8,1)\\},\) and \(g: B \rightarrow C\) be \(g=\\{(0,1),(1,1)\\} .\) Find \(g \circ f\)
Given a function \(f: A \rightarrow B\) and a subset \(Y \subseteq B,\) is \(f\left(f^{-1}(Y)\right)=Y\) always true? Prove or give a counterexample.
This problem concerns functions \(f:\\{1,2,3,4,5,6,7,8\\} \rightarrow\\{0,1,2,3,4,5,6\\} .\) How many such functions have the property that \(\left|f^{-1}(\\{2\\})\right|=4 ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.