Chapter 12: Problem 12
Consider \(f: A \rightarrow B\). Prove that \(f\) is injective if and only if \(X=f^{-1}(f(X))\) for all \(X \subseteq A .\) Prove that \(f\) is surjective if and only if \(f\left(f^{-1}(Y)\right)=Y\) for all \(Y \subseteq B\).