Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given \(f: A \rightarrow B\) and subsets \(Y, Z \subseteq B,\) prove \(f^{-1}(Y \cup Z)=f^{-1}(Y) \cup f^{-1}(Z)\).

Short Answer

Expert verified
Proven that \(f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)\) for a function \(f: A \rightarrow B\) and subsets \(Y, Z \subseteq B\).

Step by step solution

01

Understanding the Definitions

Define the function \(f: A \rightarrow B\), and subsets \(Y, Z \subseteq B\). The preimage of a set, denoted \(f^{-1}(Y)\), includes all the elements in the domain A that get mapped to the elements in Y under the function f.
02

Proving the Left Subset Relation

To show \(f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)\), first prove the left subset relation \(f^{-1}(Y \cup Z) \subseteq f^{-1}(Y) \cup f^{-1}(Z)\). Assume \(x \in f^{-1}(Y \cup Z)\). This means \(f(x) \in Y \cup Z\), which implies \(f(x) \in Y\) or \(f(x) \in Z\). Thus, \(x \in f^{-1}(Y)\) or \(x \in f^{-1}(Z)\) which means \(x \in f^{-1}(Y) \cup f^{-1}(Z)\). We have shown if \(x \in f^{-1}(Y \cup Z)\), then \(x \in f^{-1}(Y) \cup f^{-1}(Z)\), hence \(f^{-1}(Y \cup Z) \subseteq f^{-1}(Y) \cup f^{-1}(Z)\).
03

Proving the Right Subset Relation

Now prove the right subset relation \(f^{-1}(Y \cup Z) \supseteq f^{-1}(Y) \cup f^{-1}(Z)\). Assume \(x \in f^{-1}(Y) \cup f^{-1}(Z)\). This means \(x \in f^{-1}(Y)\) or \(x \in f^{-1}(Z)\), which implies \(f(x) \in Y\) or \(f(x) \in Z\). Therefore, \(f(x) \in Y \cup Z\), which implies \(x \in f^{-1}(Y \cup Z)\). If \(x \in f^{-1}(Y) \cup f^{-1}(Z)\), then \(x \in f^{-1}(Y \cup Z)\), hence \(f^{-1}(Y \cup Z) \supseteq f^{-1}(Y) \cup f^{-1}(Z)\).
04

Equality Concluding

Since \(f^{-1}(Y \cup Z) \subseteq f^{-1}(Y) \cup f^{-1}(Z)\) and \(f^{-1}(Y \cup Z) \supseteq f^{-1}(Y) \cup f^{-1}(Z)\), by definition of set equality, it follows that \(f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free