Chapter 12: Problem 11
Given \(f: A \rightarrow B\) and subsets \(Y, Z \subseteq B,\) prove \(f^{-1}(Y \cup Z)=f^{-1}(Y) \cup f^{-1}(Z)\).
Chapter 12: Problem 11
Given \(f: A \rightarrow B\) and subsets \(Y, Z \subseteq B,\) prove \(f^{-1}(Y \cup Z)=f^{-1}(Y) \cup f^{-1}(Z)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose \(A=\\{5,6,8\\}, B=\\{0,1\\}, C=\\{1,2,3\\} .\) Let \(f: A \rightarrow B\) be the function \(f=\) \(\\{(5,1),(6,0),(8,1)\\},\) and \(g: B \rightarrow C\) be \(g=\\{(0,1),(1,1)\\} .\) Find \(g \circ f\)
Consider the set \(f=\\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x+3 y=4\\} .\) Is this a function from \(\mathbb{Z}\) to \(\mathbb{Z} ?\) Explain.
Is the function \(\theta: \mathscr{P}(\mathbb{Z}) \rightarrow \mathscr{P}(\mathbb{Z})\) defined as \(\theta(X)=\bar{X}\) bijective? If so, find \(\theta^{-1}\).
Given a function \(f: A \rightarrow B\) and subsets \(W, X \subseteq A,\) prove \(f(W \cap X) \subseteq f(W) \cap f(X)\).
Prove that the function \(f: \mathbb{N} \rightarrow \mathbb{Z}\) defined as \(f(n)=\frac{(-1)^{n}(2 n-1)+1}{4}\) is bijective.
What do you think about this solution?
We value your feedback to improve our textbook solutions.