Chapter 12: Problem 10
Given \(f: A \rightarrow B\) and subsets \(Y, Z \subseteq B,\) prove \(f^{-1}(Y \cap Z)=f^{-1}(Y) \cap f^{-1}(Z)\).
Chapter 12: Problem 10
Given \(f: A \rightarrow B\) and subsets \(Y, Z \subseteq B,\) prove \(f^{-1}(Y \cap Z)=f^{-1}(Y) \cap f^{-1}(Z)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(f: A \rightarrow B\) be a function, and \(Y \subseteq B\). Prove or disprove: \(f^{-1}\left(f\left(f^{-1}(Y)\right)\right)=f^{-1}(Y)\).
Consider the functions \(f, g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}\) defined as \(f(m, n)=\left(m n, m^{2}\right)\) and \(g(m, n)=(m+1, m+n)\). Find the formulas for \(g \circ f\) and \(f \circ g\).
Given a function \(f: A \rightarrow B\) and subsets \(W, X \subseteq A,\) prove \(f(W \cap X) \subseteq f(W) \cap f(X)\).
Consider the set \(f=\left\\{\left(x^{3}, x\right): x \in \mathbb{R}\right\\} .\) Is this a function from \(\mathbb{R}\) to \(\mathbb{R} ?\) Explain.
Consider the function \(f: \mathbb{R} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{R}\) defined as \(f(x, y)=(y, 3 x y) .\) Check that this is bijective; find its inverse.
What do you think about this solution?
We value your feedback to improve our textbook solutions.