Chapter 12: Problem 1
Consider the function \(f: \mathbb{R} \rightarrow \mathbb{R}\) defined as \(f(x)=x^{2}+3\). Find \(f([-3,5])\) and \(f^{-1}([12,19]) .\)
Chapter 12: Problem 1
Consider the function \(f: \mathbb{R} \rightarrow \mathbb{R}\) defined as \(f(x)=x^{2}+3\). Find \(f([-3,5])\) and \(f^{-1}([12,19]) .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the functions \(f, g: \mathbb{R} \rightarrow \mathbb{R}\) defined as \(f(x)=\sqrt[3]{x+1}\) and \(g(x)=x^{3}\). Find the formulas for \(g \circ f\) and \(f \circ g\).
Let \(f: A \rightarrow B\) be a function, and \(Y \subseteq B\). Prove or disprove: \(f^{-1}\left(f\left(f^{-1}(Y)\right)\right)=f^{-1}(Y)\).
Consider the functions \(f, g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}\) defined as \(f(m, n)=(3 m-4 n, 2 m+n)\) and \(g(m, n)=(5 m+n, m) .\) Find the formulas for \(g \circ f\) and \(f \circ g\).
Consider the cosine function \(\cos : \mathbb{R} \rightarrow \mathbb{R}\). Decide whether this function is injective and whether it is surjective. What if it had been defined as \(\cos : \mathbb{R} \rightarrow[-1,1] ?\)
A function \(f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}\) is defined as \(f(m, n)=2 n-4 m .\) Verify whether this function is injective and whether it is surjective.
What do you think about this solution?
We value your feedback to improve our textbook solutions.