Chapter 11: Problem 8
Suppose \([a],[b] \in \mathbb{Z}_{n},\) and \([a]=\left[a^{\prime}\right]\) and \([b]=\left[b^{\prime}\right] .\) Alice adds \([a]\) and \([b]\) as \([a]+[b]=\) \([a+b] .\) Bob adds them as \(\left[a^{\prime}\right]+\left[b^{\prime}\right]=\left[a^{\prime}+b^{\prime}\right]\). Show that their answers \([a+b]\) and \(\left[a^{\prime}+b^{\prime}\right]\) are the same.