Chapter 1: Problem 8
(a) \(\bigcup_{\alpha \in \mathbb{R}}\\{\alpha\\} \times[0,1]=\) (b) \(\bigcap_{\alpha \in \mathbb{R}}\\{\alpha\\} \times[0,1]=\)
Chapter 1: Problem 8
(a) \(\bigcup_{\alpha \in \mathbb{R}}\\{\alpha\\} \times[0,1]=\) (b) \(\bigcap_{\alpha \in \mathbb{R}}\\{\alpha\\} \times[0,1]=\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch these Cartesian products on the \(x-y\) plane \(\mathbb{R}^{2}\) (or \(\mathbb{R}^{3}\) for the last two). $$ \mathbb{N} \times \mathbb{Z} $$
List all the subsets of the following sets. $$ \\{\\{0,1\\},\\{0,1,\\{2\\}\\},\\{0\\}\\} $$
Sketch the following sets of points in the \(x-y\) plane. $$ \\{(x, y):|x|=2, y \in[0,1]\\} $$
Sketch these Cartesian products on the \(x-y\) plane \(\mathbb{R}^{2}\) (or \(\mathbb{R}^{3}\) for the last two). $$ \\{1\\} \times[0,1] $$
Is the statement \((\mathbb{R} \times \mathbb{Z}) \cap(\mathbb{Z} \times \mathbb{R})=\mathbb{Z} \times \mathbb{Z}\) true or false? What about the statement \((\mathbb{R} \times \mathbb{Z}) \cup(\mathbb{Z} \times \mathbb{R})=\mathbb{R} \times \mathbb{R} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.