Chapter 1: Problem 2
Suppose \(A=\\{0,2,4,6,8\\}, B=\\{1,3,5,7\\}\) and \(C=\\{2,8,4\\} .\) Find: (a) \(A \cup B\) (b) \(A \cap B\) (c) \(A-B\) (d) \(A-C\) (e) \(B-A\) (f) \(A \cap C\) (g) \(B \cap C\) (h) \(C-A\) (i) \(C-B\)
Chapter 1: Problem 2
Suppose \(A=\\{0,2,4,6,8\\}, B=\\{1,3,5,7\\}\) and \(C=\\{2,8,4\\} .\) Find: (a) \(A \cup B\) (b) \(A \cap B\) (c) \(A-B\) (d) \(A-C\) (e) \(B-A\) (f) \(A \cap C\) (g) \(B \cap C\) (h) \(C-A\) (i) \(C-B\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the following sets by listing their elements between braces. $$ \mathscr{P}(\\{a, b\\} \times\\{0\\}) $$
Suppose that \(|A|=m\) and \(|B|=n .\) Find the following cardinalities. $$ |\mathscr{P}(\mathscr{P}(A))| $$
Suppose \(A=\\{0,1\\}\) and \(B=\\{1,2\\} .\) Find: (a) \((A \times B) \cap(B \times B)\) (b) \((A \times B) \cup(B \times B)\) (c) \((A \times B)-(B \times B)\) (d) \((A \cap B) \times A\) (e) \((A \times B) \cap B\) (f) \(\mathscr{P}(A) \cap \mathscr{P}(B)\) \((\mathbf{g}) \mathscr{P}(A)-\mathscr{P}(B)\) (h) \(\mathscr{P}(A \cap B)\) (i) \(\mathscr{P}(A \times B)\)
Find the following cardinalities. $$ \left|\left\\{x \in \mathbb{Z}: x^{2}<10\right\\}\right| $$
Decide if the following statements are true or false. Explain. $$ \left\\{(x, y) \in \mathbb{R}^{2}: x^{2}-x=0\right\\} \subseteq\left\\{(x, y) \in \mathbb{R}^{2}: x-1=0\right\\} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.