Chapter 1: Problem 15
Decide if the following statements are true or false. Explain. $$ \left\\{(x, y) \in \mathbb{R}^{2}: x-1=0\right\\} \subseteq\left\\{(x, y) \in \mathbb{R}^{2}: x^{2}-x=0\right\\} $$
Chapter 1: Problem 15
Decide if the following statements are true or false. Explain. $$ \left\\{(x, y) \in \mathbb{R}^{2}: x-1=0\right\\} \subseteq\left\\{(x, y) \in \mathbb{R}^{2}: x^{2}-x=0\right\\} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose \(A=\\{b, c, d\\}\) and \(B=\\{a, b\\}\). Find: (a) \((A \times B) \cap(B \times B)\) (b) \((A \times B) \cup(B \times B)\) (c) \((A \times B)-(B \times B)\) (d) \((A \cap B) \times A\) (e) \((A \times B) \cap B\) (f) \(\mathscr{P}(A) \cap \mathscr{P}(B)$$(\mathbf{g}) \mathscr{P}(A)-\mathscr{P}(B)\) (h) \(\mathscr{P}(A \cap B)\) (i) \(\mathscr{P}(A) \times \mathscr{P}(B)\)
List all the subsets of the following sets. $$ \\{\varnothing\\} $$
Do you think the statement \((\mathbb{R}-\mathbb{Z}) \times \mathbb{N}=(\mathbb{R} \times \mathbb{N})-(\mathbb{Z} \times \mathbb{N})\) is true, or false? Justify.
(a) \(\bigcup_{i \in \mathbb{N}} R \times[i, i+1]=\) (b) \(\bigcap_{i \in \mathbb{N}} \mathbb{R} \times[i, i+1]=\)
Draw Venn diagrams for \(A \cup(B \cap C)\) and \((A \cup B) \cap(A \cup C)\). Based on your drawings, do you think \(A \cup(B \cap C)=(A \cup B) \cap(A \cup C) ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.