Problem 1
Suppose \(A_{1}=\\{a, b, d, e, g, f\\}, A_{2}=\\{a, b, c, d\\}, A_{3}=\\{b, d, a\\}\) and \(A_{4}=\\{a, b, h\\}\) (a) \(\bigcup_{i=1}^{4} A_{i}=\) (b) \(\bigcap_{i=1}^{4} A_{i}=\)
Problem 1
Draw a Venn diagram for \(\bar{A},\) where \(A\) is a subset of a universal set \(U\).
Problem 1
List all the subsets of the following sets. $$ \\{1,2,3,4\\} $$
Problem 1
Let \(A=\\{4,3,6,7,1,9\\}\) and \(B=\\{5,6,8,4\\}\) have universal set \(U=\\{0,1,2, \ldots, 10\\} .\) Find: (a) \(\bar{A}\) (d) \(A \cup \bar{A}\) (g) \(\bar{A}-\bar{B}\) (b) \(\bar{B}\) (e) \(A-\bar{A}\) (h) \(\bar{A} \cap B\) (c) \(A \cap \bar{A}\) (f) \(A-\bar{B}\) (i) \(\overline{\bar{A} \cap B}\)
Problem 1
Suppose \(A=\\{1,2,3,4\\}\) and \(B=\\{a, c\\}\) (a) \(A \times B\) (c) \(A \times A\) (e) \(\varnothing \times B\) (g) \(A \times(B \times B)\) (b) \(B \times A\) (d) \(B \times B\) (f) \((A \times B) \times B\) (h) \(B^{3}\)
Problem 1
Write the following sets by listing their elements between braces. $$ \mathscr{P}(\\{\\{a, b\\},\\{c\\}\\}) $$
Problem 1
Suppose \(A=\\{4,3,6,7,1,9\\}, B=\\{5,6,8,4\\}\) and \(C=\\{5,8,4\\} .\) Find (a) \(A \cup B\) (b) \(A \cap B\) (c) \(A-B\) (d) \(A-C\) (e) \(B-A\) (f) \(A \cap C\) (g) \(B \cap C\) (h) \(B \cup C\) (i) \(C-B\)
Problem 2
Suppose \(A=\\{\pi, e, 0\\}\) and \(B=\\{0,1\\}\). (a) \(A \times B\) (c) \(A \times A\) (e) \(A \times \varnothing\) (g) \(A \times(B \times B)\) (b) \(B \times A\) (d) \(B \times B\) (f) \((A \times B) \times B\) (h) \(A \times B \times B\)
Problem 2
List all the subsets of the following sets. $$ \\{1,2, \varnothing\\} $$
Problem 2
Suppose \(A=\\{0,2,4,6,8\\}, B=\\{1,3,5,7\\}\) and \(C=\\{2,8,4\\} .\) Find: (a) \(A \cup B\) (b) \(A \cap B\) (c) \(A-B\) (d) \(A-C\) (e) \(B-A\) (f) \(A \cap C\) (g) \(B \cap C\) (h) \(C-A\) (i) \(C-B\)