Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 1

Suppose \(A_{1}=\\{a, b, d, e, g, f\\}, A_{2}=\\{a, b, c, d\\}, A_{3}=\\{b, d, a\\}\) and \(A_{4}=\\{a, b, h\\}\) (a) \(\bigcup_{i=1}^{4} A_{i}=\) (b) \(\bigcap_{i=1}^{4} A_{i}=\)

Problem 1

Draw a Venn diagram for \(\bar{A},\) where \(A\) is a subset of a universal set \(U\).

Problem 1

List all the subsets of the following sets. $$ \\{1,2,3,4\\} $$

Problem 1

Let \(A=\\{4,3,6,7,1,9\\}\) and \(B=\\{5,6,8,4\\}\) have universal set \(U=\\{0,1,2, \ldots, 10\\} .\) Find: (a) \(\bar{A}\) (d) \(A \cup \bar{A}\) (g) \(\bar{A}-\bar{B}\) (b) \(\bar{B}\) (e) \(A-\bar{A}\) (h) \(\bar{A} \cap B\) (c) \(A \cap \bar{A}\) (f) \(A-\bar{B}\) (i) \(\overline{\bar{A} \cap B}\)

Problem 1

Suppose \(A=\\{1,2,3,4\\}\) and \(B=\\{a, c\\}\) (a) \(A \times B\) (c) \(A \times A\) (e) \(\varnothing \times B\) (g) \(A \times(B \times B)\) (b) \(B \times A\) (d) \(B \times B\) (f) \((A \times B) \times B\) (h) \(B^{3}\)

Problem 1

Write the following sets by listing their elements between braces. $$ \mathscr{P}(\\{\\{a, b\\},\\{c\\}\\}) $$

Problem 1

Suppose \(A=\\{4,3,6,7,1,9\\}, B=\\{5,6,8,4\\}\) and \(C=\\{5,8,4\\} .\) Find (a) \(A \cup B\) (b) \(A \cap B\) (c) \(A-B\) (d) \(A-C\) (e) \(B-A\) (f) \(A \cap C\) (g) \(B \cap C\) (h) \(B \cup C\) (i) \(C-B\)

Problem 2

Suppose \(A=\\{\pi, e, 0\\}\) and \(B=\\{0,1\\}\). (a) \(A \times B\) (c) \(A \times A\) (e) \(A \times \varnothing\) (g) \(A \times(B \times B)\) (b) \(B \times A\) (d) \(B \times B\) (f) \((A \times B) \times B\) (h) \(A \times B \times B\)

Problem 2

List all the subsets of the following sets. $$ \\{1,2, \varnothing\\} $$

Problem 2

Suppose \(A=\\{0,2,4,6,8\\}, B=\\{1,3,5,7\\}\) and \(C=\\{2,8,4\\} .\) Find: (a) \(A \cup B\) (b) \(A \cap B\) (c) \(A-B\) (d) \(A-C\) (e) \(B-A\) (f) \(A \cap C\) (g) \(B \cap C\) (h) \(C-A\) (i) \(C-B\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks