The following shows how to determine that the linear space \(C[0,1]\) with the
norm
$$
\|x\|=\int_{0}^{1}|x(s)| d s
$$
is incomplete.
(a) Define
$$
x_{n}(s)= \begin{cases}-1 & s \in\left[-1,-\frac{1}{n}\right] \\ n s & s
\in\left(-\frac{1}{n}, \frac{1}{n}\right) \\ 1 & s \in\left[\frac{1}{n},
1\right]\end{cases}
$$
Sketch \(x_{n}\) and compute \(\left\|x_{p}-x_{q}\right\|\) for arbitrary values
of \(p\) and \(q\).
(b) Show that \(\left\\{x_{n}\right\\}\) is a Cauchy sequence.
(c) Define \(x\) as the function
$$
x(s)= \begin{cases}-1 & s \in[-1,0) \\ 1 & s \in[0,1]\end{cases}
$$
Compute \(\left\|x-x_{n}\right\|\) for abitrary values of \(n\) in \(\mathbb{N}\).
(d) Show that \(\left\|x_{n}-x\right\| \rightarrow 0\) as \(n \rightarrow
\infty\).
(e) Show that \(C[0,1]\) with the given norm is not complete.