Chapter 7: Problem 18
A particle is subject to hits at time points generated by a Poisson process with intensity \(\lambda\). Every hit moves the particle a horizontal, \(N\left(0, \sigma^{2}\right)\)-distributed distance. The displacements are independent random variables, which, in addition, are independent of the Poisson process. Let \(S_{t}\) be the location of the particle at time \(t\) (we begin at time 0 ). (a) Compute \(E S_{t}\). (b) Compute \(\operatorname{Var}\left(S_{t}\right)\). (c) Show that $$ \frac{S_{t}-E S_{t}}{\sqrt{\operatorname{Var}\left(S_{t}\right)}} \stackrel{d}{\longrightarrow} N\left(0, a^{2}\right) \quad \text { as } \quad t \rightarrow \infty $$ and determine the value of the constant \(a\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.