Chapter 4: Problem 26
(a) Define maps \(\varphi_{i, j}: \mathbb{A}^{n+m} \rightarrow U_{i} \times U_{j} \subset \mathbb{P}^{n} \times \mathbb{P}^{m}\). Using \(\varphi_{n+1, m+1}\), define the "biprojective closure" of an algebraic set in \(\mathbb{A}^{n+m}\). Prove an analogue of Proposition 3 of \(\$ 4.3\). (b) Generalize part (a) to maps \(\varphi: \mathbb{A}^{n_{1}} \times \mathbb{A}^{n_{r}} \times \mathbb{A}^{m} \rightarrow \mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{r}} \times \mathbb{A}^{m} .\) Show that this sets up a correspondence between \\{nonempty affine varieties in \(\left.\mathbb{A}^{n_{1}+\cdots+m}\right\\}\) and \\{varieties in \(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{A}^{m}\) that intersect \(\left.U_{n_{1}+1} \times \cdots \times \mathbb{A}^{m}\right\\} .\) Show that this correspondence preserves function fields and local rings.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.