For simplicity of notation, in this problem we let \(X_{0}, \ldots, X_{n}\) be
coordinates for \(\mathbb{P}^{n}, Y_{0}, \ldots, Y_{m}\) coordinates for
\(\mathbb{P}^{m}\), and \(T_{00}, T_{01}, \ldots, T_{0 m}, T_{10}, \ldots, T_{n
m}\) coordinates for \(\mathbb{P}^{N}\), where \(N=(n+1)(m+1)-1=n+m+n m .\)
Define \(S: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{N}\) by
the formula:
$$
S\left(\left[x_{0}: \ldots: x_{n}\right],\left[y_{0}: \ldots:
y_{m}\right]\right)=\left[x_{0} y_{0}: x_{0} y_{1}: \ldots: x_{n} y_{m}\right]
$$
\(S\) is called the Segre embedding of \(\mathbb{P}^{n} \times \mathbb{P}^{m}\) in
\(\mathbb{P}^{n+m+n m}\).
(a) Show that \(S\) is a well-defined, one-to-one mapping. (b) Show that if \(W\)
is an algebraic subset of \(\mathbb{P}^{N}\), then \(S^{-1}(W)\) is an algebraic
subset of \(\mathbb{P}^{n} \times \mathbb{P}^{m}\). (c) Let
\(V=V\left(\left\\{T_{i j} T_{k l}-T_{i l} T_{k j} \mid i, k=0, \ldots, n ; j,
l=0, \ldots, m\right\\}\right) \subset \mathbb{P}^{N} .\) Show that
\(S\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)=V\) In fact, \(S\left(U_{i}
\times U_{j}\right)=V \cap U_{i j}\), where \(U_{i j}=\left\\{[t] \mid t_{i j}
\neq 0\right\\} .\) (d) Show that \(V\) is a variety.