(a) Show that there are \(d+1\) monomials of degree \(d\) in \(R[X, Y]\), and \(1+2+\)
\(\cdots+(d+1)=(d+1)(d+2) / 2\) monomials of degree \(d\) in \(R[X, Y, Z]\). (b) Let
\(V(d, n)=\) \(\left\\{\right.\) forms of degree \(d\) in \(\left.k\left[X_{1},
\ldots, X_{n}\right]\right\\}, k\) a field. Show that \(V(d, n)\) is a vector
space over \(k\), and that the monomials of degree \(d\) form a basis. So
\(\operatorname{dim} V(d, 1)=1 ; \operatorname{dim} V(d, 2)=\) \(d+1 ;
\operatorname{dim} V(d, 3)=(d+1)(d+2) / 2 .\) (c) Let \(L_{1}, L_{2}, \ldots\)
and \(M_{1}, M_{2}, \ldots\) be sequences of nonzero linear forms in \(k[X, Y]\),
and assume no \(L_{i}=\lambda M_{j}, \lambda \in k .\) Let \(A_{i j}=\) \(L_{1}
L_{2} \ldots L_{i} M_{1} M_{2} \ldots M_{j}, i, j \geq
0\left(A_{00}=1\right)\). Show that \(\left\\{A_{i j} \mid i+j=d\right\\}\) forms
a basis for \(V(d, 2)\).