Chapter 9: Problem 58
The Sawtooth Curve An oscilloscope often displays a sawtooth curve. This curve can be approximated by sinusoidal curves of varying periods and amplitudes. (a) Use a graphing utility to graph the following function, which can be used to approximate the sawtooth curve. $$ f(x)=\frac{1}{2} \sin (2 \pi x)+\frac{1}{4} \sin (4 \pi x) \quad 0 \leq x \leq 4 $$ (b) A better approximation to the sawtooth curve is given by $$ f(x)=\frac{1}{2} \sin (2 \pi x)+\frac{1}{4} \sin (4 \pi x)+\frac{1}{8} \sin (8 \pi x) $$ Use a graphing utility to graph this function for \(0 \leq x \leq 4\) and compare the result to the graph obtained in part (a). (c) A third and even better approximation to the sawtooth curve is given by \(f(x)=\frac{1}{2} \sin (2 \pi x)+\frac{1}{4} \sin (4 \pi x)+\frac{1}{8} \sin (8 \pi x)+\frac{1}{16} \sin (16 \pi x)\) Use a graphing utility to graph this function for \(0 \leq x \leq 4\) and compare the result to the graphs obtained in parts (a) and (b). (d) What do you think the next approximation to the sawtooth curve is?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.