Chapter 7: Problem 27
The following data represent the average monthly temperatures for Indianapolis, Indiana. $$ \begin{array}{|lc|} \hline & \text { Average Monthly } \\ \text { Month, } \boldsymbol{x} & \text { Temperature, }^{\circ} \mathrm{F} \\\ \hline \text { January, } 1 & 28.1 \\ \text { February, } 2 & 32.1 \\ \text { March, } 3 & 42.2 \\ \text { April, } 4 & 53.0 \\ \text { May, } 5 & 62.7 \\ \text { June, } 6 & 72.0 \\ \text { July, } 7 & 75.4 \\ \text { August, } 8 & 74.2 \\ \text { September, } 9 & 66.9 \\ \text { October, } 10 & 55.0 \\ \text { November, } 11 & 43.6 \\ \text { December, } 12 & 31.6 \\ \hline \end{array} $$ (a) Draw a scatter plot of the data for one period. (b) Find a sinusoidal function of the form $$ y=A \sin (\omega x-\phi)+B $$ that models the data. (c) Draw the sinusoidal function found in part (b) on the scatter plot. (d) Use a graphing utility to find the sinusoidal function of best fit. (e) Graph the sinusoidal function of best fit on a scatter plot of the data.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.