Write the Potential Rational Zeros
The potential rational zeros are the ratios of the factors of the constant term to the factors of the leading coefficient. List all possible combinations: \(\frac{10}{6}, \frac{10}{3}, \frac{10}{2}, \frac{10}{1}, \frac{5}{6}, \frac{5}{3}, \frac{5}{2}, \frac{5}{1}, \frac{2}{6}, \frac{2}{3}, \frac{2}{2}, \frac{2}{1}, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}, -\frac{10}{6}, -\frac{10}{3}, -\frac{10}{2}, -\frac{10}{1}, -\frac{5}{6}, -\frac{5}{3}, -\frac{5}{2}, -\frac{5}{1}, -\frac{2}{6}, -\frac{2}{3}, -\frac{2}{2}... \) and so on, after simplification.