Chapter 5: Problem 118
We begin with two consecutive integers, \(a\) and \(a+1,\) for which \(f(a)\) and \(f(a+1)\) are of opposite sign. Evaluate \(f\) at the midpoint \(m_{1}\) of \(a\) and \(a+1 .\) If \(f\left(m_{1}\right)=0,\) then \(m_{1}\) is the zero of \(f,\) and we are finished. Otherwise, \(f\left(m_{1}\right)\) is of opposite sign to either \(f(a)\) or \(f(a+1) .\) Suppose that it is \(f(a)\) and \(f\left(m_{1}\right)\) that are of opposite sign. Now evaluate \(f\) at the midpoint \(m_{2}\) of \(a\) and \(m_{1} .\) Repeat this process until the desired degree of accuracy is obtained. Note that each iteration places the zero in an interval whose length is half that of the previous interval. Use the bisection method to approximate the zero of \(f(x)=8 x^{4}-2 x^{2}+5 x-1\) in the interval [0,1] correct to three decimal places. [Hint: The process ends when both endpoints agree to the desired number of decimal places.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.