Chapter 4: Problem 82
Use the fact that a quadratic function of the form \(f(x)=a x^{2}+b x+c\) with \(b^{2}-4 a c>0\) may also be written in the form \(f(x)=a\left(x-r_{1}\right)\left(x-r_{2}\right),\) where \(r_{1}\) and \(r_{2}\) are the \(x\) -intercepts of the graph of the quadratic function. (a) Find quadratic functions whose \(x\) -intercepts are -5 and 3 with \(a=1 ; a=2 ; a=-2 ; a=5\) (b) How does the value of \(a\) affect the intercepts? (c) How does the value of \(a\) affect the axis of symmetry? (d) How does the value of \(a\) affect the vertex? (e) Compare the \(x\) -coordinate of the vertex with the midpoint of the \(x\) -intercepts. What might you conclude?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.