Chapter 4: Problem 38
Challenge Problem Runaway Car Using Hooke's Law, we can show that the work \(W\) done in compressing a spring a distance of \(x\) feet from its at-rest position is \(W=\frac{1}{2} k x^{2}\) where \(k\) is a stiffness constant depending on the spring. It can also be shown that the work done by a body in motion before it comes to rest is given by \(\tilde{W}=\frac{w}{2 g} v^{2},\) where \(w=\) weight of the object (in Ib), \(g=\) acceleration due to gravity \(\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right),\) and \(v=\) object's velocity \((\mathrm{in} \mathrm{ft} / \mathrm{s})\). A parking garage has a spring shock absorber at the end of a ramp to stop runaway cars. The spring has a stiffness constant \(k=9450 \mathrm{lb} / \mathrm{ft}\) and must be able to stop a \(4000-\mathrm{lb}\) car traveling at \(25 \mathrm{mph}\). What is the least compression required of the spring? Express your answer using feet to the nearest tenth. Source: www.sciforums com
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.