Chapter 4: Problem 37
Artillery A projectile fired from the point (0,0) at an angle to the positive \(x\) -axis has a trajectory given by $$ y=c x-\left(1+c^{2}\right)\left(\frac{g}{2}\right)\left(\frac{x}{v}\right)^{2} $$ where \(x=\) horizontal distance in meters \(y=\) height in meters \(\begin{aligned} v=& \text { initial muzle velocity in meters per second (m/s) } \\ g=& \text { acceleration due to gravity }=9.81 \text { meters per second } \\ & \text { squared (m/s }^{2} \text { ) } \end{aligned}\) \(c>0\) is a constant determined by the angle of elevation. A howitzer fires an artillery round with a muzzle velocity of \(897 \mathrm{~m} / \mathrm{s}\) (a) If the round must clear a hill 200 meters high at a distance of 2000 meters in front of the howitzer, what \(c\) values are permitted in the trajectory equation? (b) If the goal in part (a) is to hit a target on the ground 75 kilometers away, is it possible to do so? If so, for what values of \(c ?\) If not, what is the maximum distance the round will travel? Source: wwianswers.com
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.