Chapter 3: Problem 88
The period \(T\) (in seconds) of a simple pendulum is a function of its length \(l\) (in feet) defined by the equation $$ T=2 \pi \sqrt{\frac{l}{g}} $$ where \(g \approx 32.2\) feet per second per second is the acceleration due to gravity. (a) Use a graphing utility to graph the function \(T=T(l)\). (b) Now graph the functions \(T=T(l+1), T=T(l+2)\) $$ \text { and } T=T(l+3) $$ (c) Discuss how adding to the length \(l\) changes the period \(T\) (d) Now graph the functions \(T=T(2 l), T=T(3 l)\), and \(T=T(4 l)\) (e) Discuss how multiplying the length \(l\) by factors of 2,3 , and 4 changes the period \(T\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.