Chapter 3: Problem 106
Factor \(z^{3}+216\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 106
Factor \(z^{3}+216\).
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe slope of the secant line containing the two points \((x, f(x))\) and \((x+h, f(x+h))\) on the graph of a function \(y=f(x)\) may be given as \(m_{\mathrm{sec}}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \quad h \neq 0\) (a) Express the slope of the secant line of each function in terms of \(x\) and \(h\). Be sure to simplify your answer. (b) Find \(m_{\text {sec }}\) for \(h=0.5,0.1\), and 0.01 at \(x=1 .\) What value does \(m_{\text {sec }}\) approach as h approaches \(0 ?\) (c) Find an equation for the secant line at \(x=1\) with \(h=0.01\). (d) Use a graphing utility to graph fand the secant line found in part ( \(c\) ) in the same viewing window. Problems \(85-92\) require the following discussion of a secant line. The slope of the secant line containing the two points \((x, f(x))\) and \((x+h, f(x+h))\) on the graph of a function \(y=f(x)\) may be given as \(m_{\mathrm{sec}}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \quad h \neq 0\) (a) Express the slope of the secant line of each function in terms of \(x\) and \(h\). Be sure to simplify your answer. (b) Find \(m_{\text {sec }}\) for \(h=0.5,0.1\), and 0.01 at \(x=1 .\) What value does \(m_{\text {sec }}\) approach as h approaches \(0 ?\) (c) Find an equation for the secant line at \(x=1\) with \(h=0.01\). (d) Use a graphing utility to graph fand the secant line found in part ( \(c\) ) in the same viewing window. \(f(x)=-3 x+2\)
Simplify: \(\sqrt{540}\)
Find the average rate of change of \(h(x)=x^{2}-2 x+3\) (a) From -1 to 1 (b) From 0 to 2 (c) From 2 to 5
\(h(x)=x^{2}-2 x\) (a) Find the average rate of change from 2 to 4 . (b) Find an equation of the secant line containing \((2, h(2))\) and \((4, h(4))\)
The amount of water used when taking a shower varies directly with the number of minutes the shower is run. If a 4 -minute shower uses 7 gallons of water, how much water is used in a 9-minute shower?
What do you think about this solution?
We value your feedback to improve our textbook solutions.