Chapter 3: Problem 103
Simplify: \(\sqrt{540}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 103
Simplify: \(\sqrt{540}\)
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe slope of the secant line containing the two points \((x, f(x))\) and \((x+h, f(x+h))\) on the graph of a function \(y=f(x)\) may be given as \(m_{\mathrm{sec}}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \quad h \neq 0\) (a) Express the slope of the secant line of each function in terms of \(x\) and \(h\). Be sure to simplify your answer. (b) Find \(m_{\text {sec }}\) for \(h=0.5,0.1\), and 0.01 at \(x=1 .\) What value does \(m_{\text {sec }}\) approach as h approaches \(0 ?\) (c) Find an equation for the secant line at \(x=1\) with \(h=0.01\). (d) Use a graphing utility to graph fand the secant line found in part ( \(c\) ) in the same viewing window. Problems \(85-92\) require the following discussion of a secant line. The slope of the secant line containing the two points \((x, f(x))\) and \((x+h, f(x+h))\) on the graph of a function \(y=f(x)\) may be given as \(m_{\mathrm{sec}}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \quad h \neq 0\) (a) Express the slope of the secant line of each function in terms of \(x\) and \(h\). Be sure to simplify your answer. (b) Find \(m_{\text {sec }}\) for \(h=0.5,0.1\), and 0.01 at \(x=1 .\) What value does \(m_{\text {sec }}\) approach as h approaches \(0 ?\) (c) Find an equation for the secant line at \(x=1\) with \(h=0.01\). (d) Use a graphing utility to graph fand the secant line found in part ( \(c\) ) in the same viewing window. \(f(x)=-x^{2}+3 x-2\)
The amount of water used when taking a shower varies directly with the number of minutes the shower is run. If a 4 -minute shower uses 7 gallons of water, how much water is used in a 9-minute shower?
The period \(T\) (in seconds) of a simple pendulum is a function of its length \(l\) (in feet) defined by the equation $$ T=2 \pi \sqrt{\frac{l}{g}} $$ where \(g \approx 32.2\) feet per second per second is the acceleration due to gravity. (a) Use a graphing utility to graph the function \(T=T(l)\). (b) Now graph the functions \(T=T(l+1), T=T(l+2)\) $$ \text { and } T=T(l+3) $$ (c) Discuss how adding to the length \(l\) changes the period \(T\) (d) Now graph the functions \(T=T(2 l), T=T(3 l)\), and \(T=T(4 l)\) (e) Discuss how multiplying the length \(l\) by factors of 2,3 , and 4 changes the period \(T\)
In statistics, the standard normal density function is given by \(f(x)=\frac{1}{\sqrt{2 \pi}} \cdot \exp \left[-\frac{x^{2}}{2}\right]\) This function can be transformed to describe any general normal distribution with mean, \(\mu,\) and standard deviation, \(\sigma .\) A general normal density function is given by \(f(x)=\frac{1}{\sqrt{2 \pi} \cdot \sigma} \cdot \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] .\) Describe the transformations needed to get from the graph of the standard normal function to the graph of a general normal function.
Simplify \(\frac{\left(4 x^{2}-7\right) \cdot 3-(3 x+5) \cdot 8 x}{\left(4 x^{2}-7\right)^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.