Chapter 13: Problem 91
Bode's Law In \(1772,\) Johann Bode published the following formula for predicting the mean distances, in astronomical units (AU), of the planets from the sun: $$ a_{1}=0.4 \quad a_{n}=0.4+0.3 \cdot 2^{n-2} $$ where \(n \geq 2\) is the number of the planet from the sun. (a) Determine the first eight terms of the sequence. (b) At the time of Bode's publication, the known planets were Mercury \((0.39 \mathrm{AU}),\) Venus \((0.72 \mathrm{AU}),\) Earth \((1 \mathrm{AU})\) Mars \((1.52 \mathrm{AU}),\) Jupiter \((5.20 \mathrm{AU}),\) and Saturn \((9.54 \mathrm{AU})\) How do the actual distances compare to the terms of the sequence? (c) The planet Uranus was discovered in \(1781,\) and the asteroid Ceres was discovered in \(1801 .\) The mean orbital distances from the sun to Uranus and Ceres " are \(19.2 \mathrm{AU}\) and \(2.77 \mathrm{AU},\) respectively. How well do these values fit within the sequence? (d) Determine the ninth and tenth terms of Bode's sequence. (e) The planets Neptune and Pluto" were discovered in 1846 and \(1930,\) respectively. Their mean orbital distances from the sun are \(30.07 \mathrm{AU}\) and \(39.44 \mathrm{AU},\) respectively. How do these actual distances compare to the terms of the sequence? (f) On July \(29,2005,\) NASA announced the discovery of a dwarf planet \((n=11),\) which has been named Eris. Use Bode's Law to predict the mean orbital distance of Eris from the sun. Its actual mean distance is not yet known, but Eris is currently about 97 astronomical units from the sun.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.