Chapter 13: Problem 89
Approximating \(f(x)=e^{x}\) In calculus, it can be shown that $$ f(x)=e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k !} $$ We can approximate the value of \(f(x)=e^{x}\) for any \(x\) using the following sum $$ f(x)=e^{x} \approx \sum_{k=0}^{n} \frac{x^{k}}{k !} $$ for some \(n\). (a) Approximate \(f(1.3)\) with \(n=4\). (b) Approximate \(f(1.3)\) with \(n=7\). (c) Use a calculator to approximate \(f(1.3)\) (d) Using trial and error, along with a graphing utility's SEOuence mode, determine the value of \(n\) required to approximate \(f(1.3)\) correct to eight decimal places.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.