For matrix operations, identifying and substituting elements accurately is crucial. Let's apply this to our matrix \(M = \begin{pmatrix} b & 3 \ b & 2 \end{pmatrix}\). The elements of the matrix are:
- \(a = b\)
- \(b = 3\)
- \(c = b\)
- \(d = 2\)
Using the inverse formula \(A^{-1} = \frac{1}{{ad - bc}} \begin{pmatrix} d & -b \ -c & a \end{pmatrix}\), substitute the matrix elements and determinant:
\(A^{-1} = \frac{1}{{-b}} \begin{pmatrix} 2 & -3 \ -b & b \end{pmatrix} = \begin{pmatrix} \frac{2}{-b} & \frac{-3}{-b} \ \frac{-b}{-b} & \frac{b}{-b} \end{pmatrix} = \begin{pmatrix} \frac{-2}{b} & \frac{3}{b} \ 1 & -1 \end{pmatrix}\).
Accurate substitution ensures the correct inverse matrix, highlighting the importance of each matrix element in the calculations.