Chapter 10: Problem 38
Find \(z w\) and \(\frac{z}{w} .\) Write each answer in polar form and in exponential form. \(z=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\) \(w=\cos \frac{5 \pi}{9}+i \sin \frac{5 \pi}{9}\)
Short Answer
Expert verified
The product is \(zw = e^{i \frac{11\pi}{9}} = \text{cis}(\frac{11\pi}{9})\). The quotient is \(\frac{z}{w} = e^{i \frac{\pi}{9}} = \text{cis}(\frac{\pi}{9})\).
Step by step solution
01
- Write both numbers in exponential form
The complex number in polar form is written as:\[ z = \text{cis}(\theta_z) = \text{cis} \left(\frac{2\pi}{3}\right) \]\[ w = \text{cis}(\theta_w) = \text{cis} \left(\frac{5\pi}{9}\right)\]In exponential form, they are:\[ z = e^{i \frac{2\pi}{3}} \]\[ w = e^{i \frac{5\pi}{9}} \]
02
- Find the product \(zw\) in exponential form
Using the property of exponents for multiplication, \(e^{i\theta_1} e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}\):\[ z w = e^{i \frac{2\pi}{3}} \cdot e^{i \frac{5\pi}{9}} = e^{i \left(\frac{2\pi}{3} + \frac{5\pi}{9}\right)} \]
03
- Simplify the angle for the product
Combine the angles in the exponent:\[ \frac{2\pi}{3} + \frac{5\pi}{9} = \frac{6\pi}{9} + \frac{5\pi}{9} = \frac{11\pi}{9} \]Thus, \[ zw = e^{i \frac{11\pi}{9}} \]
04
- Express \(zw\) in polar form
Since \(e^{i\theta} = \text{cis}(\theta)\), we get:\[ zw = \text{cis} \left(\frac{11\pi}{9}\right) \]
05
- Find the quotient \(\frac{z}{w}\) in exponential form
Using the property for division of exponents, \(\frac{e^{i\theta_1}}{e^{i\theta_2}} = e^{i(\theta_1 - \theta_2)}\):\[ \frac{z}{w} = \frac{e^{i \frac{2\pi}{3}}}{e^{i \frac{5\pi}{9}}} = e^{i \left(\frac{2\pi}{3} - \frac{5\pi}{9}\right)} \]
06
- Simplify the angle for the quotient
Combine the angles in the exponent:\[ \frac{2\pi}{3} - \frac{5\pi}{9} = \frac{6\pi}{9} - \frac{5\pi}{9} = \frac{\pi}{9} \]Thus, \[ \frac{z}{w} = e^{i \frac{\pi}{9}} \]
07
- Express \(\frac{z}{w}\) in polar form
Since \(e^{i\theta} = \text{cis}(\theta)\), we have:\[ \frac{z}{w} = \text{cis} \left(\frac{\pi}{9}\right) \]
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
polar form
Polar form is a way of expressing complex numbers using a combination of a magnitude (or modulus) and an angle (or argument). This is very useful for understanding the geometric representation of complex numbers on the complex plane. A complex number in polar form is represented as:
ewline
\( z = r \text{cis}(\theta) \), where \( r \) is the magnitude and \( \theta \) is the argument.
ewline
The \( \text{cis} \) means \( \text{cos} + i\text{sin} \). For example, \( z = \text{cos} \frac{2 \pi}{3} + i \text{sin} \frac{2 \pi}{3} \) can be written in polar form as:
ewline
\( z = \text{cis}(\frac{2 \pi}{3}) \). This form helps us easily identify the angle and modulus of the complex number.
ewline
\( z = r \text{cis}(\theta) \), where \( r \) is the magnitude and \( \theta \) is the argument.
ewline
The \( \text{cis} \) means \( \text{cos} + i\text{sin} \). For example, \( z = \text{cos} \frac{2 \pi}{3} + i \text{sin} \frac{2 \pi}{3} \) can be written in polar form as:
ewline
\( z = \text{cis}(\frac{2 \pi}{3}) \). This form helps us easily identify the angle and modulus of the complex number.
exponential form
The exponential form provides another way to represent complex numbers, taking advantage of Euler's formula, which states that \( e^{i\theta} = \text{cos}(\theta) + i\text{sin}(\theta) \). Converting a complex number into exponential form can simplify many operations like multiplication and division.
ewline
Using the previous example, \( z = \text{cis}(\frac{2 \pi}{3}) \) can be written in exponential form as:
ewline
\( z = e^{i \frac{2 \pi}{3}} \). Similarly, for \( w = \text{cis}(\frac{5 \pi}{9}) \), it becomes:
ewline
\( w = e^{i \frac{5 \pi}{9}} \). This representation makes it straightforward to use the properties of exponents to perform operations on complex numbers.
ewline
Using the previous example, \( z = \text{cis}(\frac{2 \pi}{3}) \) can be written in exponential form as:
ewline
\( z = e^{i \frac{2 \pi}{3}} \). Similarly, for \( w = \text{cis}(\frac{5 \pi}{9}) \), it becomes:
ewline
\( w = e^{i \frac{5 \pi}{9}} \). This representation makes it straightforward to use the properties of exponents to perform operations on complex numbers.
multiplication of complex numbers
Multiplying complex numbers in polar or exponential form is much simpler compared to rectangular form. The rule for multiplying them is to multiply their magnitudes and add their arguments. For instance, given:
ewline
\( z = e^{i \frac{2 \pi}{3}} \) and \( w = e^{i \frac{5 \pi}{9}} \), the product is:
ewline
\( z w = e^{i \frac{2 \pi}{3}} \times e^{i \frac{5 \pi}{9}} = e^{i \big(\frac{2 \pi}{3} + \frac{5 \pi}{9}\big)} \)
ewline
Simplifying the angle we get:
ewline
\( \frac{2 \pi}{3} + \frac{5 \pi}{9} = \frac{6 \pi}{9} + \frac{5 \pi}{9} = \frac{11 \pi}{9} \). Thus:
ewline
\( z w = e^{i \frac{11 \pi}{9}} \), or \( z w = \text{cis} \big( \frac{11 \pi}{9} \big) \).
ewline
\( z = e^{i \frac{2 \pi}{3}} \) and \( w = e^{i \frac{5 \pi}{9}} \), the product is:
ewline
\( z w = e^{i \frac{2 \pi}{3}} \times e^{i \frac{5 \pi}{9}} = e^{i \big(\frac{2 \pi}{3} + \frac{5 \pi}{9}\big)} \)
ewline
Simplifying the angle we get:
ewline
\( \frac{2 \pi}{3} + \frac{5 \pi}{9} = \frac{6 \pi}{9} + \frac{5 \pi}{9} = \frac{11 \pi}{9} \). Thus:
ewline
\( z w = e^{i \frac{11 \pi}{9}} \), or \( z w = \text{cis} \big( \frac{11 \pi}{9} \big) \).
division of complex numbers
Dividing complex numbers in polar or exponential form is also straightforward. The rule is to divide their magnitudes and subtract their arguments. Let's take the same two complex numbers:
ewline
\( z = e^{i \frac{2 \pi}{3}} \) and \( w = e^{i \frac{5 \pi}{9}} \). The quotient is:
ewline
\( \frac{z}{w} = \frac{e^{i \frac{2 \pi}{3}}}{e^{i \frac{5 \pi}{9}}} = e^{i \big(\frac{2 \pi}{3} - \frac{5 \pi}{9}\big)} \). Simplifying the angle we get:
ewline
\( \frac{2 \pi}{3} - \frac{5 \pi}{9} = \frac{6 \pi}{9} - \frac{5 \pi}{9} = \frac{ \pi}{9} \). Thus:
ewline
\( \frac{z}{w} = e^{i \frac{\pi}{9}} \), or \( \frac{z}{w} = \text{cis} \big( \frac{\pi}{9} \big) \). This method simplifies the division process into basic algebraic addition and subtraction of angles.
ewline
\( z = e^{i \frac{2 \pi}{3}} \) and \( w = e^{i \frac{5 \pi}{9}} \). The quotient is:
ewline
\( \frac{z}{w} = \frac{e^{i \frac{2 \pi}{3}}}{e^{i \frac{5 \pi}{9}}} = e^{i \big(\frac{2 \pi}{3} - \frac{5 \pi}{9}\big)} \). Simplifying the angle we get:
ewline
\( \frac{2 \pi}{3} - \frac{5 \pi}{9} = \frac{6 \pi}{9} - \frac{5 \pi}{9} = \frac{ \pi}{9} \). Thus:
ewline
\( \frac{z}{w} = e^{i \frac{\pi}{9}} \), or \( \frac{z}{w} = \text{cis} \big( \frac{\pi}{9} \big) \). This method simplifies the division process into basic algebraic addition and subtraction of angles.