Chapter 10: Problem 12
Multiple Choice If \(z_{1}=r_{1} e^{i \theta_{1}}\) and \(z_{2}=r_{2} e^{i \theta_{2}}\) are complex numbers, then \(\frac{z_{1}}{z_{2}}, z_{2} \neq 0,\) equals: (a) \(\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}\) (b) \(\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1} \cdot \theta_{2}\right)}\) (c) \(\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}+\theta_{2}\right)}\) (d) \(\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1} / \theta_{2}\right)}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.