Setting equations involves taking a translated expression and forming an equation that matches the problem's conditions. For our exercise, we translated 'the product of 5 and \(x + 3\)' to \[5(x + 3) \].
The statement 'equals 6' tells us to set this expression equal to 6, forming the equation \[5(x + 3) = 6 \].
Here are steps for setting equations properly:
- Translate the given verbal phrase into an algebraic expression.
- Determine what the expression should equal or represent based on the problem.
- Write the complete equation to reflect these conditions.
By following these steps, you can confidently translate and set equations, just as we did in this exercise.