Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Solve each system of equations 3x+y+z=42x+2y+3z=3x+3y+2z=5.

Short Answer

Expert verified

The solution set of the given system of equations is 1,2,-1.

Step by step solution

01

Step 1. Use the elimination method to get the system of equations in two variables.

Multiply the equation 3x+y+z=4by 3 and subtract the new resultant equation from 2x+2y+3z=3.

3x+  y+   z=42x+2y+3z=3¯    multiplyby3      9x+3y+3z=122x+2y+3z=  3¯                                                  7x+  y+  0=   9

So, the resultant equation is 7x+y=9.

Multiply the equation 3x+y+z=4by 2 and subtract the new resultant equation from x+3y+2z=5.

3x+  y+   z=4  x+3y+2z=5¯    multiplyby2      6x+2y+2z=8  x+3y+2z=5¯                                                  5x  y+  0=3

So, the resultant equation is 5x-y=3.

02

Step 2. Use the elimination method to solve the system of two equations.

Add 7x+y=9and 5x-y=3.

7x+y=95xy=3¯12x+0=12

Solve 12x=12 for x:

12x=1212x12=1212      Dividebothsidesby12x=1

03

Step 3. Find the values of y and z.

Substitute x=1in 5x-y=3 and find the value of y.

5xy=351y=3                 Substitute1forx5y=3                 Simplifyy=2               Subtract5frombothsidesy=2                 Dividebothsidesby1

Substitute x=1,y=2in 3x+y+z=4and find the value ofz.

3x+y+z=431+2+z=4            substitute1forx,2fory5+z=4            simplifyz=1           subtract5frombothsides

Hence, the solution of the given system of equations is x,y,z=1,2,-1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free