Chapter 2: Problem 55
Evaluate the expression for the given value(s) of the variable(s). $$\frac{15 x^{2}+10}{y} \text { when } x=-3 \text { and } y=\frac{2}{3}$$
Chapter 2: Problem 55
Evaluate the expression for the given value(s) of the variable(s). $$\frac{15 x^{2}+10}{y} \text { when } x=-3 \text { and } y=\frac{2}{3}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeCOMBINING LIKE TERMS Apply the distributive property. Then simplify by combining like terms. $$ 4 w^{2}-w(2 w-3) $$
BUYING JEANS You have 58 dollar, and you want to buy a pair of jeans and a \(\$ 20\) T-shirt. There is a \(6 \%\) sales tax. If \(x\) represents the cost of the jeans, then the following inequality is a model that shows how much you can spend on the jeans. $$ x+20+0.06(x+20) \leq 58 $$ If the jeans cost \(\$ 35,\) can you buy both the T-shirt and the jeans?
COMBINING LIKE TERMS Apply the distributive property. Then simplify by combining like terms. $$ (5-2 x)(-x)+x^{2} $$
Evaluate the expression. $$ \frac{10}{3}-\frac{2}{3} \cdot 4+5 $$
Use the distributive property and mental math to simplify the expression. $$ \begin{aligned} 9(1.95) &=9(?-2) \\ &=? \end{aligned}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.