Chapter 11: Problem 50
Find the LCD of \(\frac{-2}{x+9}\) and \(\frac{5 x}{x^{2}+9 x}\) (A) \(\frac{x-1}{(x-1)(2 x+1)}\) \((\mathbf{B})-\frac{x}{x-1}\) (c) \(\frac{2 x^{2}+1}{(x-1)(2 x+1)}\) (D) \(\frac{2 x^{2}-1}{(x-1)(2 x+1)}\)
Chapter 11: Problem 50
Find the LCD of \(\frac{-2}{x+9}\) and \(\frac{5 x}{x^{2}+9 x}\) (A) \(\frac{x-1}{(x-1)(2 x+1)}\) \((\mathbf{B})-\frac{x}{x-1}\) (c) \(\frac{2 x^{2}+1}{(x-1)(2 x+1)}\) (D) \(\frac{2 x^{2}-1}{(x-1)(2 x+1)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSimplify the radical expression. $$\frac{1}{5} \sqrt{625}$$
Simplify the expression. $$\left(\frac{3 x^{2}}{56}\right)\left(\frac{3}{x}+\frac{5}{x}\right)$$
In Exercises 34 and \(35,\) use the expression \(\frac{2 x-5}{x-2}\) and the table feature of a graphing calculator or spreadsheet software. Construct a table that shows the value of the numerator, the value of the denominator, and the value of the entire rational expression when the value of \(x\) is \(10,100,1000,10,000,100,000,\) and \(1,000,000\)
Evaluate the function for \(x=0,1,2,3,\) and 4. $$f(x)=x^{2}-1$$
Evaluate the expression. $$2^{4} \cdot 2^{3}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.