Chapter 11: Problem 17
Simplify the expression if possible. $$\frac{12-5 x}{10 x^{2}-24 x}$$
Chapter 11: Problem 17
Simplify the expression if possible. $$\frac{12-5 x}{10 x^{2}-24 x}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeSimplify the expression. $$\frac{4 x}{5 x-2}-\frac{2 x}{5 x+1}$$
Find the LCD of \(\frac{-2}{x+9}\) and \(\frac{5 x}{x^{2}+9 x}\) (A) \(\frac{x-1}{(x-1)(2 x+1)}\) \((\mathbf{B})-\frac{x}{x-1}\) (c) \(\frac{2 x^{2}+1}{(x-1)(2 x+1)}\) (D) \(\frac{2 x^{2}-1}{(x-1)(2 x+1)}\)
Evaluate the expression. $$\left(-4^{-2}\right)^{-1}$$
Simplify the expression. $$\frac{x}{x^{2}+5 x-24}+\frac{8}{x^{2}+5 x-24}$$
Make a scatter plot of the data. Then tell whether a linear, exponential, or quadratic model fits the data. (Review 9.81) $$(-5,6),(-4,3),(-2,-3),(-1,-6),(0,-9),(1,-12)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.