Chapter 11: Problem 12
Simplify the expression if possible. $$\frac{14 x^{2}}{50 x^{4}}$$
Chapter 11: Problem 12
Simplify the expression if possible. $$\frac{14 x^{2}}{50 x^{4}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeSimplify the expression. $$\frac{x+6}{x+1}-\frac{4}{2 x+3}$$
Simplify the expression. $$\frac{x}{x^{2}-9}-\frac{3 x+1}{x^{2}-9}$$
Simplify the expression \(\frac{x}{x-1}-\frac{1}{2 x+1}\) (A) \(\frac{x-1}{(x-1)(2 x+1)}\) (B) \(-\frac{x}{x-1}\) (C) \(\frac{2 x^{2}+1}{(x-1)(2 x+1)}\) (D) \(\frac{2 x^{2}-1}{(x-1)(2 x+1)}\)
What is the solution of the equation \(\frac{9}{x+5}=\frac{7}{x-5} ?\) (A) 5 (B) 8 (C) 20 (D) 40 (E) 80
Simplify the radical expression. $$\frac{1}{4} \sqrt{112}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.