Chapter 10: Problem 67
Sums and differences of cubes can be factored using the following patterns. Sum of cubes pattern: \(a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\) Difference of cubes pattern: \(a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\) Use the patterns above to factor the cubic expression completely. Use the distributive property to verify your results. $$ 216-343 t^{3} $$