Chapter 5: Problem 5
Evaluate by Green's theorem: a) \(\oint_{C} a y d x+b x d y\) on any path; b) \(\oint e^{x} \sin y d x+e^{x} \cos y d y\) around the rectangle with vertices \((0,0),(1,0),\left(1, \frac{1}{2} \pi\right)\), \(\left(0, \frac{1}{2} \pi\right)\) c) \(\oint\left(2 x^{3}-y^{3}\right) d x+\left(x^{3}+y^{3}\right) d y\) around the circle \(x^{2}+y^{2}=1\) d) \(\oint_{C_{T}} d s\), where \(\mathbf{u}=\operatorname{grad}\left(x^{2} y\right)\) and \(C\) is the circle \(x^{2}+y^{2}=1\); e) \(\oint_{C} v_{n} d s\), where \(\mathbf{v}=\left(x^{2}+y^{2}\right) \mathbf{i}-2 x y \mathbf{j}\), and \(C\) is the circle \(x^{2}+y^{2}=1\), \(\mathbf{n}\) being the outer normal; f) \(\oint_{C} \frac{\partial}{\partial n}\left[(x-2)^{2}+y^{2}\right] d s\), where \(C\) is the circle \(x^{2}+y^{2}=1, \mathbf{n}\) is the outer normal; g) \(\oint_{C} \frac{\partial}{\partial n} \log \frac{1}{\left[(x-2)^{2}+y^{2}\right]} d s\), where \(C\) and \(\mathbf{n}\) are as in (f); h) \(\oint_{C} f(x) d x+g(y) d y\) on any path.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.