Chapter 5: Problem 3
Evaluate the following integrals: a) \(\oint[\sin (x y)+x y \cos (x y)] d x+x^{2} \cos (x y) d y\) on the circle \(x^{2}+y^{2}=1\); b) \(\oint \frac{y d x-(x-1) d y}{(x-1)^{2}+y^{2}}\) on the circle \(x^{2}+y^{2}=4\); c) \(\oint y^{3} d x-x^{3} d y\) on the square \(|x|+|y|=1\); d) \(\oint x y^{6} d x+\left(3 x^{2} y^{5}+6 x\right) d y\) on the ellipse \(x^{2}+4 y^{2}=4\). e) \(\oint(7 x-3 y+2) d x+(4 y-3 x-5) d y\) on the ellipse \(2 x^{2}+3 y^{2}=1\); f) \(\oint \frac{\left(e^{x} \cos y-1\right) d x+e^{x} \sin y d y}{e^{2 x}-2 e^{x} \cos y+1}\) on the circle \(x^{2}+y^{2}=1\). [Hint: First show that the denominator is 0 only for \(x=0\) and \(\cos y=1\) by writing it as \(\left(e^{x}-1\right)^{2}+2 e^{x}\) \((1-\cos y)\).]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.