Chapter 5: Problem 10
Let \(F(x, y)=x^{2}-y^{2}\). Evaluate a) \(\int_{(0,0)}^{(2,8)} \nabla F \cdot d \mathbf{r}\) on the curve \(y=x^{3}\); b) \(\oint \frac{\partial F}{\partial n} d s\) on the circle \(x^{2}+y^{2}=1\), if \(\mathbf{n}\) is the outer normal and \(\frac{\partial F}{\partial n}=\nabla F \cdot \mathbf{n}\) is the directional derivative of \(F\) in the direction of \(\mathbf{n}\) (Section 2.14).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.