Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-9, verify that the given function is a homomorphism and find its kernel.

f:Sn2, whererole="math" localid="1654585699138" f(σ)=0ifσis even andf(σ)=1 ifσis odd.

Short Answer

Expert verified

It is proved that,fis a homomorphism and Kerf={σSn:σ  is  even}=An .

Step by step solution

01

To show f is a homomorphism

Definition of Group Homomorphism

Let (G,)and (G',')be any two groups. A function f:GG'is said to be a group homomorphism if f(ab)=f(a)  '  f(b),    a,  bG.

Definition of Kernel of a Function

Let f:GH be a homomorphism of groups. Then the kernel of fis defined by the set {aG:f(a)=eH}, where eHis an identity element.

It is the mapping from elements in role="math" localid="1654586114033" Gonto an identity element in role="math" localid="1654586117930" Hby the homomorphism role="math" localid="1654586122429" f.

Letrole="math" localid="1654586149158" f:Sn2be the function defined as,f(σ)=0ifσis even andf(σ)=1

ifrole="math" localid="1654586311869" σis odd.

We have to show thatfis a homomorphism.

Let σ,τSn.

We show that f(στ1)=f(σ)f(τ)1as follows:

Case1: σis even and role="math" localid="1654586410380" τis even

Sinceσis even androle="math" localid="1654586482826" τis even, soτ1is and therefore στ1is even.

Then, prove f(στ1)=f(σ)f(τ)1as follows:

f(στ1)=0  mod  2=0+0=f(σ)+f(τ)1

f(στ1)=f(σ)f(τ)1.

Case2: role="math" localid="1654586895096" σ is even and τis odd

Sinceσis even andτis odd so isτ1and therefore στ1is odd.

Then, prove f(στ1)=f(σ)f(τ)1as follows:

f(στ1)=1  mod  2=0+1=f(σ)+f(τ)1

f(στ1)=f(σ)f(τ)1

Case3: role="math" localid="1654586952935" σis odd and role="math" localid="1654586946019" τis even

Sinceσis odd andτis even so isτ1and thereforeστ1 is odd.

Then, prove f(στ1)=f(σ)f(τ)1as follows:

f(στ1)=1  mod  2=1+0=f(σ)+f(τ)1

f(στ1)=f(σ)f(τ)1

Case 4: σis odd and τis odd

Sinceσis odd andτis odd so isτ1and therefore στ1is odd.

Then, prove f(στ1)=f(σ)f(τ)1as follows:

f(στ1)=1  mod  2=1+1=f(σ)+f(τ)1

f(στ1)=f(σ)f(τ)1

Hence, fis a homomorphism.

02

To find kernel of f

We find kernel of fas:

Kerf={σSn:σ  is  even}=An

Hence, is a homomorphism and Kerf={σSn:σ  is  even}=An .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free