Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Show that the ring M() is not a division ring by exhibiting a matrix that has no multiplicative inverse. (Division rings are defined in Exercise 42 of Section 3.1.)

Short Answer

Expert verified

The ring M() is not a division ring.

Step by step solution

01

Division ring

A division ring is a ring Rwith identity 1R0Rthat satisfies the axioms,

1. whenever role="math" localid="1654243948842" a,bR and ab=0R then role="math" localid="1654243944848" a=0R or role="math" localid="1654243941168" b=0R.

2.For each a0R in R, the equation ax=1R has a solution inR .

02

M(ℝ) is not a division ring

Consider a matrix A=1000M()and take another matrix B=b11b12b21b22in M() then the find the multiplicative inverse as follows:

AB=1000b11b12b21b22=b11b12001001

Thus, there is no multiplicative inverse of the matrix A in M().

Therefore, M() is not a division ring.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free