Chapter 17: Q3E (page 552) URL copied to clipboard! Now share some education! Prove these parts of Theorem G. 1:(a) addition in P is associative;(b) both distributive laws hold in P;(c) Pis commutative if R is. Short Answer Expert verified It is proved thatP is associative.It is proved that both distributive laws hold in P.It is proved that P is commutative if R is. Step by step solution 01 Introduction of polynomial and theorem G.1 Consider the polynomial in xand ℝwill be express as;role="math" localid="1658911188375" P(x)=a0x0+a1x1+a2x2+...+anxnPolynomial is always finite but sequence can be finite and infinite.According to the theorem G.1, let R is the ring with identity and P the set of polynomials with coefficients in R. then P is a ring with identity if R is commutative then P is also commutative. 02 Prove that addition in P is associative (a)Consider three infinite polynomial sequences (a0, a1,...), (b0, b1,...)and(c0, c1,...) .Now to prove addition in is associative, prove {(a0, a1,...)⊕(b0, b1,...)⊕(c0, c1,...)}=(a0, a1,...)⊕{(b0, b1,...)⊕(c0, c1,...)}.Now evaluate,{(a0, a1,...)⊕(b0, b1,...)⊕(c0, c1,...)} .{(a0, a1,...)⊕(b0, b1,...)}⊕(c0, c1,...)={(a0+b0, a1+b1)}⊕(c0, c1,...)=(a0+b0+c0, a1+b1+c1,...)And,(a0, a1,...)⊕{(b0, b1,...)⊕(c0, c1,...)}=(a0, a1,...)⊕{b0+c0, b1+c1,...}=(a0+b0+c0, a1+b1+c1,...)Therefore, role="math" localid="1658911388362" {(a0, a1,...)⊕(b0, b1,...)}⊕(c0, c1,...)=(a0, a1,...)⊕{(b0, b1,...)⊕(c0, c1,...)}.Hence, it is proved thatP is associative. 03 Prove that both distributive laws hold in P (b)Consider the three infinite polynomial sequences (a0, a1,...), (b0, b1,...)and (c0, c1,...).Now to prove distributive law show that(a0, a1,...)⊗{(b0, b1,...)⊕(c0, c1,...)}={(a0, a1,...)⊗(b0, b1,...)}⊕{(a0, a1,...)⊗(c0, c1,...)}Evaluate (a0, a1,...)⊗{(b0, b1,...)⊕(c0, c1,...)}.(a0, a1,...)⊗{(b0, b1,...)⊕(c0, c1,...)}=(a0, a1,...)⊗{(b0+c0, b1+c1,...)}=(a0⋅(b0+c0), a0⋅(b1+c1), a1⋅(b0+c0), a2⋅(b1+c1),...)=(a0⋅b0+a0⋅c0, a0⋅b1+a0⋅c1, a1⋅b0+a1⋅c0, a1⋅b1+a1⋅c1,...)Evaluate {(a0, a1,...)⊗(b0, b1,...)}⊕{(a0, a1,...)⊗(c0, c1,...)}.{(a0, a1,...)⊗(b0, b1,...)}⊕{(a0, a1,...)⊗(c0, c1,...)}=(a0⋅b0, a0⋅b1, a1⋅b0, a1⋅b1,...)⊕(a0⋅c0, a0⋅c1, a1⋅c0, a1⋅c1,...)=(a0⋅b0+a0⋅c0, a0⋅b1+a0⋅c1, a1⋅b0+a1⋅c0, a1⋅b1+a1⋅c1,...)Therefore,role="math" localid="1658911610678" (a0, a1,...)⊗{(b0, b1,...)⊕(c0, c1,...)}={(a0, a1,...)⊗(b0, b1,...)}⊕{(a0, a1,...)⊗(c0, c1,...)}Hence, it is proved that both distributive laws hold in P. 04 Prove that P is commutative if R is (c)Consider two infinite polynomial sequences , (a0, a1,...)and (b0, b1,...).To prove that Pis commutative if Ris commutative then(a0, a1,...)⊕(b0, b1,...)=(a0+b0, a0+b1, a1+b0, a1+b1,...)And,(b0, b1,...)⊕(a0, a1,...)=(b0+a0, b0+a1, b1+a0, b1+a1,...)Therefore, (a0, a1,...)⊕(b0, b1,...)=(b0, b1,...)⊕(a0, a1,...)if and only ifR is commutative.Hence, it is proved that P is commutative if R is. Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!