Chapter 16: 1E (page 490)
Find the parity-check matrix of each standard generator matrix in Exercise 5 of Section 16.1.
Chapter 16: 1E (page 490)
Find the parity-check matrix of each standard generator matrix in Exercise 5 of Section 16.1.
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion 15: Let C be the BCH code of Examples 1 and 2, with codewords written as polynomials of degree . Suppose the codeword c (x)transmitted with errors in the coefficients of and and role="math" localid="1659179965727" is received. Then , whose roots are role="math" localid="1659179995612" and role="math" localid="1659179986054" , is the error-locator polynomial. Express the coeffecients ofD(x)in terms of as follows.
Complete the proof of Theorem 16.3 by showing that if a code detects t errors,then the Hamming distance between any two codewords is at least .
Find the Hamming weight of
(a)
(b)
(c)
(d)
Prove that B (n) =(n factors) with coordinate wise addition is an abelian group of order.
Suppose the probability of transmitting a single digit incorrectly is greater than 0.5. Explain why "inverse decoding" (decoding 1 as 0 and 0 as 1) should be employed.
What do you think about this solution?
We value your feedback to improve our textbook solutions.