Chapter 24: Problem 33
Show that in Grassmann's combinatory multiplication, $$ \begin{aligned} &\left(\sum \alpha_{1 i} \epsilon_{i}\right)\left(\sum \alpha_{2 i} \epsilon_{i}\right) \cdots\left(\sum \alpha_{n i} \epsilon_{i}\right) \\ &\quad=\operatorname{det}\left(\alpha_{i j}\right)\left[\epsilon_{1} \epsilon_{2} \cdots \epsilon_{n}\right] \end{aligned} $$ where each linear combination is of a given set of \(n\) firstorder units and where \(\left[\epsilon_{1} \epsilon_{2} \cdots \epsilon_{n}\right]\) is the single unit of \(n\)th order.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.