Chapter 18: Problem 16
Add the highest-degree terms of the columns from Exercise 15 to get $$ s\left(\frac{s}{m}+\frac{1}{2 \cdot 3} \frac{s^{3}}{m^{3}}+\frac{1}{3 \cdot 5} \frac{s^{5}}{m^{5}}+\frac{1}{4 \cdot 7} \frac{s^{7}}{m^{7}}+\cdots\right) $$ which, setting \(x=s / m\), is equal to $$ s\left(\frac{2 x}{1 \cdot 2}+\frac{2 x^{3}}{3 \cdot 4}+\frac{2 x^{5}}{5 \cdot 6}+\frac{2 x^{7}}{7 \cdot 8}+\cdots\right) $$ Show that the series in the parenthesis can be expressed in finite terms as $$ \log \left(\frac{1+x}{1-x}\right)+\frac{1}{x} \log \left(1-x^{2}\right) $$ and therefore that the original series is $$ m x \log \left(\frac{1+x}{1-x}\right)+m \log \left(1-x^{2}\right) $$ Since \(s=m-1\) (or \(m x=m-1\) ), show therefore that the sum of the highest- degree terms of the columns of Exercise 15 is equal to $$ \begin{aligned} &(m-1) \log \left(\frac{1+\frac{m-1}{m}}{1-\frac{m-1}{m}}\right) \\ &\quad+m \log \left[\left(1+\frac{m-1}{m}\right)\left(1-\frac{m-1}{m}\right)\right] \end{aligned} $$ which in turn is equal to \((2 m-1) \log (2 m-1)-2 m \log m\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.