Chapter 9: Problem 8
Let \(\left\\{X_{n}\right\\}\) be a zero-mean covariance stationary process having covariance function \(R_{X}(v)\) and spectral density function \(f_{X}(\omega),-\pi \leq \omega \leq \pi\). Suppose \(\left\\{a_{n}\right\\}\) is a real sequence for which \(\sum_{b, 0}^{\infty}\left|a_{i} a_{j} R(i-j)\right|<\infty\), and define $$ Y_{n}=\sum_{k=0}^{\infty} a_{k} X_{n-k} $$ Show that the spectral density function \(f_{Y}(\omega)\) for \(\left\\{Y_{n}\right\\}\) is given by $$ \begin{aligned} f_{Y}(\omega) &=\frac{\sigma_{X}^{2}}{\sigma_{Y}^{2}}\left|\sum_{k=0}^{\infty} a_{k} e^{i k \omega}\right|^{2} f_{x}(\omega) \\ &=\frac{\sigma_{X}^{2}}{\sigma_{Y}^{2}}\left[\sum_{X=0}^{\infty} a_{j} a_{k} \cos (j-k) \omega\right] f_{X}(\omega), \quad-\pi \leq \omega \leq \pi . \end{aligned} $$