Chapter 9: Problem 6
Let \(\left\\{X_{n}\right\\}_{n=-\infty}^{+\infty}\) be a zero-mean covariance stationary process having covariance function \(R(v)=\gamma^{|0|}, v=0, \pm 1, \ldots\), where \(|\gamma|<1 .\) Find the minimum mean square error linear predictor of \(X_{n+1}\) given the entire past \(X_{n}, X_{n-1} \ldots\)